Liverpool John Moores University

Title:	Drone Technology
Status:	Definitive
Code:	7300DRO (125804)
Version Start Date:	01-08-2020
Owning School/Faculty:	Engineering
Teaching School/Faculty:	Engineering

Team	Leader
Mohamed Kara-Mohamed	Y
Frederic Bezombes	

Academic Level:	FHEQ7	Credit Value:	20	Total Delivered Hours:	33
Total Learning Hours:	200	Private Study:	167		

Delivery Options

Course typically offered: Semester 1

Component	Contact Hours
Lecture	22
Tutorial	11

Grading Basis: 50 %

Assessment Details

Category	Short Description	Description	Weighting (%)	Exam Duration
Report	AS1	Prepare a report describing the technical requirements of an aircraft and payload.	50	
Test	AS2	Complete a test which requires the student to specify components and equipment for a drone, based on operational requirements.	50	

Aims

To provide a comprehensive overview of drone technology at a conceptual and

practical level.

Learning Outcomes

After completing the module the student should be able to:

- 1 Identify the component elements of a drone system.
- 2 Identify the role, limitations and purpose of the various sub-systems that make up a multi-rotor drone.
- 3 Perform calculations aimed at determining the power and navigational system requirements for a drone to perform a specified task.

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Technical Report	1	2	3
Selection and Specification	1	3	

Outline Syllabus

Drone Systems Technology:

- Anatomy of a multirotor drone system.
- Types of drones; fixed-wing and multi-rotor.
- Power and propulsion systems.
- Energy storage and management. Battery monitoring and state-of-charge.
- Control systems; radio equipment, flight controllers, auto-pilots.
- Performance envelop of drone systems. Navigation and location systems; basics of GPS, inertial navigation systems.
- Failure modes and effects. Pre and post-flight technical checks.
- Technical threats to safe operation and anti-drone technologies.

Learning Activities

The module will be taught by a series of lectures and tutorial sessions.

Notes

This module provides knowledge of Drones at a systems level.