

Module Proforma

Approved, 2022.02

Summary Information

Module Code	7306MECH
Formal Module Title	Marine Design Engineering
Owning School	Engineering
Career	Undergraduate
Credits	10
Academic level	FHEQ Level 7
Grading Schema	50

Module Contacts

Module Leader

Contact Name	Applies to all offerings	Offerings
Eduardo Blanco Davis	Yes	N/A

Module Team Member

Contact Name Applies to all offerings Offerings	
---	--

Partner Module Team

Contact Name	Applies to all offerings	Offerings
--------------	--------------------------	-----------

Teaching Responsibility

LJMU Schools involved in Delivery	
Engineering	

Learning Methods

Learning Method Type	Hours
----------------------	-------

Lecture 22	
------------	--

Module Offering(s)

Offering Code	Location	Start Month	Duration
JAN-CTY	CTY	January	12 Weeks

Aims and Outcomes

Δime	The aim of the module is to provide students with the appropriate level of marine engineering knowledge and expertise required of an effective member of a marine engineering design team.
------	--

Learning Outcomes

After completing the module the student should be able to:

Code	Description
MLO1	Develop process and instrumentation diagrams.
MLO2	Critically analyse sound pressure levels in an enclosed space.
MLO3	Apply HAZOP to a complex scenario.
MLO4	Evaluate heat exchanger performance by the effectiveness-NTU method.

Module Content

Outline Syllabus

Space engineering - to become aware of issues surrounding the layout of a machinery space taking account of items such as pipe routes, tankage, proximity to associated plant, maintenance space, access and safety etc. Detailed development of Piping and Instrumentation Diagrams (P&ID's). Number of Transfer Units (NTU) effectiveness method for evaluation of heat exchanger performance. Condition monitoring techniques including vibration analyses. Hazard and Operability Analysis (HAZOP) studies. Shafting alignment.

Module Overview

Additional Information

The module is designed to provide the student with an in-depth grounding of the typical practices and procedures that they will encounter should they pursue a career in the marine engineering design environment. The module will also provide a good grounding for those students pursuing careers in other industries such as power generation and process engineering. This module includes content which relates to the following UN Sustainable Development Goals: SDG13 – This module considers how marine engineering designers strive to lower GHG emissions onboard. SDG14 – This module will consider how onboard systems should be designed, operated, and maintained in order to prevent ocean pollution.

Assessments

Assignment Category	Assessment Name	Weight	Exam/Test Length (hours)	Learning Outcome Mapping
Centralised Exam	Examination	100	2	MLO1, MLO2, MLO4, MLO3