

# **Structural Dynamics**

# **Module Information**

2022.01, Approved

## **Summary Information**

| Module Code         | 7312MECH            |
|---------------------|---------------------|
| Formal Module Title | Structural Dynamics |
| Owning School       | Engineering         |
| Career              | Undergraduate       |
| Credits             | 10                  |
| Academic level      | FHEQ Level 7        |
| Grading Schema      | 50                  |

#### Teaching Responsibility

| LJMU Schools involved in Delivery |  |
|-----------------------------------|--|
| Engineering                       |  |

## **Learning Methods**

| Learning Method Type | Hours |
|----------------------|-------|
| Lecture              | 22    |
| Practical            | 3     |
| Tutorial             | 11    |

## Module Offering(s)

| Display Name | Location | Start Month | Duration Number Duration Unit |
|--------------|----------|-------------|-------------------------------|
| JAN-CTY      | СТҮ      | January     | 12 Weeks                      |

### Aims and Outcomes

Aims

The module is aimed at extending students' knowledge of dynamics and applied finite element methods to an advanced level that will allow them to improve mechanical structures performance and design. The module is intended to be practical in nature providing students with the skills to analyse and solve engineering dynamics problems by means of computational and analytical methods.

#### After completing the module the student should be able to:

#### Learning Outcomes

| Code | Number | Description                                                                                                                                                                                 |
|------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MLO1 | 1      | Use computer aided methods to setup efficient and accurate numerical (FE) models of a range of engineering components and systems under dynamic loading.                                    |
| MLO2 | 2      | Critically evaluate the response of linear dynamics analysis and the influence of different dynamic or geometric parameters for improved dynamic performance and a better use of materials. |
| MLO3 | 3      | Apply knowledge of the basic theory that underpins linear dynamic and modal analysis to structures under dynamic loading conditions.                                                        |
| MLO4 | 4      | Use computer aided methods and time and frequency response to validate numerical models against experimentally measured data.                                                               |

## **Module Content**

| Outline Syllabus       | General aspects of linear dynamic theory.Normal mode analysis and frequency extraction.<br>Orthogonality of the modes and modal space dynamics. Modelling of damping.Mode-based<br>dynamics and modal superposition. Use modal coordinates and computer-based methods to<br>reduce the problem's size and simulation and analysis costs.Basic theory of FE model<br>updating and validation against experimental data.Assess and improve product design in line<br>with sustainable development and better use of materials.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Overview        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Additional Information | The module extends previous studies in engineering analysis and will provide students with a basic understanding of the application of linear dynamic analysis and product design in mechanical engineering.On successful completion of the module students will be able to use modelling assumptions and integrate (FE) dynamic analysis in design of mechanical structures in view of an improved performance and a better use of materials.The module provides the skills necessary for an analysis and design engineering or NVH role and covers basic aspects of dynamics of structures with application in automotive, aerospace or offshore engineering.This module includes content which relates to the following UN Sustainable Development Goal:SDG10 – This module will consider how engineering designers can consider sustainability and a more efficient use of materials at the same time as providing improved performance when developing new products. |

### Assessments

| Assignment Category | Assessment Name | Weight | Exam/Test Length (hours) | Module Learning<br>Outcome Mapping |
|---------------------|-----------------|--------|--------------------------|------------------------------------|
| Centralised Exam    | Examination     | 100    | 2                        | MLO1, MLO2,<br>MLO3, MLO4          |

### **Module Contacts**

#### Module Leader

Contact Name

Offerings

| Dan Stancioiu | Yes | N/A |
|---------------|-----|-----|
|---------------|-----|-----|

#### Partner Module Team

| Contact Name Applies to all offerings Offerings | Contact Name | Applies to all offerings | Offerings |
|-------------------------------------------------|--------------|--------------------------|-----------|
|-------------------------------------------------|--------------|--------------------------|-----------|