Liverpool John Moores University

Warning: An incomplete or missing proforma may have resulted from system verification processing

Title:	Engineered Risk Control Systems & Performance (Oil & Gas)
Status:	Definitive
Code:	7530ENGRSK (118600)
Version Start Date:	01-08-2016
Owning School/Faculty:	Maritime and Mechanical Engineering
Teaching School/Faculty:	Maritime and Mechanical Engineering

Team	Leader
Alan Wall	Y

Academic Level:	FHEQ7	Credit Value:	10	Total Delivered Hours:	16.5
Total Learning Hours:	100	Private Study:	83.5		

Delivery Options

Course typically offered: Runs Twice - S1 & S2

Component	Contact Hours
Lecture	10
Online	.5
Tutorial	6

Grading Basis: 40 %

Assessment Details

Category	Short	Description	Weighting	Exam
	Description		(%)	Duration
Essay	Essay	An essay question comprising several component parts, based around a case study, up to 2,000 words long.	50	
Technology	Analysis	Analyse plant to deduce the Safety Critical Elements and devise performance standards, up to 2,000 words.	50	

Aims

To provide an understanding of Safety Critical Elements and the need for Performance Standards and Technical Integrity Verification Schemes.

Learning Outcomes

After completing the module the student should be able to:

- 1 Critically review the application of risk control systems in the Oil and Gas and Process industries
- 2 Analyse a process plant to logically deduce the relevant Safety Critical Elements
- 3 Devise Performance Standards for oil and gas Safety Critical Elements
- 4 Illustrate what assurances are required regarding engineered risk control systems to ensure technical integrity over the lifetime of the asset

Learning Outcomes of Assessments

The assessment item list is assessed via the learning outcomes listed:

Essay based on case	1	4
study		
Performance standard	2	3

Outline Syllabus

Major accident causes Definition of Safety Critical Elements and the need for Performance Standards Examples of Safety Critical Elements Environmental and Business Critical Elements Defining Performance Standards Functional requirements Availability & Reliability (more detail in Availability, Reliability and Maintainability (ARM) Analysis module) Survivability Interdependencies Performance Assurance Verification of Performance Technical Integrity assurance throughout an assets lifecycle - Codes and standards

- Design reviews
- Fabrication tests, certification etc.
- Construction reviews and inspections
- Commissioning tests
- Preventative maintenance systems
- Optimum maintenance scheduling

Learning Activities

A combination of lectures, exercises during the taught session, and supported self

study.

Notes

The purpose of this module is to provide an understanding of Engineered Risk Control Systems and the need for performance standards and technical integrity verification schemes. This involves looking at definitions for Engineered Risk Control Systems and the need for performance standards. Performance assurance and verification of performance will be discussed as technical integrity assurance throughout an assets lifecycle.

The assessment for this module is a combination of an essay and a technological task.