

# **Modelling and Simulation**

## **Module Information**

**2022.01, Approved** 

### **Summary Information**

| Module Code         | 7534ELEMST               |
|---------------------|--------------------------|
| Formal Module Title | Modelling and Simulation |
| Owning School       | Engineering              |
| Career              | Postgraduate Taught      |
| Credits             | 10                       |
| Academic level      | FHEQ Level 7             |
| Grading Schema      | 50                       |

#### **Teaching Responsibility**

LJMU Schools involved in Delivery

LJMU Partner Taught

#### **Partner Teaching Institution**

Institution Name
Sri Lanka Technological Campus

## **Learning Methods**

| Learning Method Type | Hours |
|----------------------|-------|
| Lecture              | 11    |
| Practical            | 22    |
| Tutorial             | 6     |

## **Module Offering(s)**

| Display Name | Location | Start Month | Duration Number Duration Unit |
|--------------|----------|-------------|-------------------------------|
| SEP-PAR      | PAR      | September   | 12 Weeks                      |

## **Aims and Outcomes**

| Aims | This module is designed to introduce Matlab coding for scientific computation, and system simulation using Simulink. The module will enable students with a background in using a traditional high-level programming language, but no experience using National Instruments (NI) LabVIEW, to create virtual Instruments (VI's) and interface them with compatible hardware for data acquisition (DAQ) and control applications. |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### After completing the module the student should be able to:

### **Learning Outcomes**

| Code | Number | Description                                                                                                                       |
|------|--------|-----------------------------------------------------------------------------------------------------------------------------------|
| MLO1 | 1      | Use complex Matlab coding to solve complex ODEs and other high level scientific computation problems                              |
| MLO2 | 2      | Simulate dynamic systems with Simulink                                                                                            |
| MLO3 | 3      | Construct a range of LabVIEW VI's which demonstrate the typical functionality encountered in industrial and research applications |

### **Module Content**

| Outline Syllabus       | Matlab coding: vector/matrix input and calculation, loop coding, condition coding, plot curves, coding and calling functions, M-file coding, M-file debugging. Solving ODEs: dynamic system modelling, numerical methods for solving ODE's including fourth order Runge Kutta method, solving ODEs. Simulink with Matlab: data communication including From workspace, To workspace, import and outport, calling Simulink model from Matlab. Simulation with Simulink: dynamic system simulation examples with Matlab and Simulink. Using the LabVIEW User Interface to navigate the LABVIEW software, and to find help using the built indocumentation system. Understanding the architecture of a LabVIEW virtual instrument in terms of front panel and block diagram views. Introduce commonly used tools in the control and function palettes. Understanding the dataflow model of execution in LabVIEW. |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Overview        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Additional Information | This is a level 7 module for students to learn how to use Matlab/Simulink & LABVIEW for scientific computation and dynamic system simulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### **Assessments**

| Assignment Category | Assessment Name              | Weight | Exam/Test Length (hours) | Module Learning<br>Outcome Mapping |
|---------------------|------------------------------|--------|--------------------------|------------------------------------|
| Essay               | Matlab, Simulink,<br>LABVIEW | 100    | 0                        | MLO1, MLO2,<br>MLO3                |

### **Module Contacts**

#### **Module Leader**

| Contact Name | Applies to all offerings | Offerings |
|--------------|--------------------------|-----------|
| Dingli Yu    | Yes                      | N/A       |

#### **Partner Module Team**

| Contact Name | Applies to all offerings | Offerings |
|--------------|--------------------------|-----------|
|              |                          |           |